Python Module for Ancient Indian Mathematics and Astronomy
AncIndMatAst
pip install AncIndMatAst
वर्गात्राणि वर्गेऽवर्गेऽवर्गाताराणी का मौ यः ।
खद्विनवके स्वरा नव वर्गेऽवर्गे नवान्त्यवर्गे वा ॥
Varg Consonants From क्
to म्
denote from 1
to 25
वर्ग: | क | ख | ग | घ् | ङ् | च् | छ् | ज् | झ् | ञ् | ट् | ठ् | ड् |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
व्यञ्जन | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
ढ् | ण् | त् | थ् | द् | ध् | न् | प् | फ् | ब् | भ् | म् | ||
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
Awarg consonants from य्
to ह्
denote from 3
to 10
अवर्गः | य् | र् | ल् | व् | श् | ष | स | ह |
---|---|---|---|---|---|---|---|---|
व्यञ्जन | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Vowels from अ
to औ
denote place-values from 100
to 1017
स्वरः | अ | इ | उ | ऋ | लृ | ए | ऐ | ओ | औ |
---|---|---|---|---|---|---|---|---|---|
वर्ग: | 100 | 102 | 104 | 106 | 108 | 1010 | 1012 | 1014 | 1016 |
अवर्गः | 101 | 103 | 105 | 107 | 109 | 1011 | 1013 | 1015 | 1017 |
ढुविघ्व is the Aryabhatiya Alphabetical Numeral for the number of revolutions of Saturn in 43,20,000 years, and it is 1,46,564.
ढुङ्विध्व = ( ढ उ ) + (ङ् इ) + (व् इ) + (घ् अ) + (व् अ)
= (14×104 ) + (5×102) + (6 ×103) + (4 x 1 ) + (6 x 10 )
=1,46,564.
from AncIndMatAst import AC
word="जषबिखुछृ"
value=AC.decode(word)
print(f"Value of {word} = {value}")
Value of जषबिखुछृ = 7022388
from AncIndMatAst import AC
data=AC.encode(364224)
print(data.get("sabd"))
print(data.get("length"))
print(data.get("allSabd"))
भखिरिचुयु
120
['भखिरिचुयु', 'भखिरियुचु', 'भखिचुरियु', 'भखिचुयुरि', 'भखियुरिचु', 'भखियुचुरि', 'भरिखिचुयु', 'भरिखियुचु', 'भरिचुखियु', 'भरिचुयुखि', 'भरियुखिचु', 'भरियुचुखि', 'भचुखिरियु', 'भचुखियुरि', 'भचुरिखियु', 'भचुरियुखि', 'भचुयुखिरि', 'भचुयुरिखि', 'भयुखिरिचु', 'भयुखिचुरि', 'भयुरिखिचु', 'भयुरिचुखि', 'भयुचुखिरि', 'भयुचुरिखि', 'खिभरिचुयु', 'खिभरियुचु', 'खिभचुरियु', 'खिभचुयुरि', 'खिभयुरिचु', 'खिभयुचुरि', 'खिरिभचुयु', 'खिरिभयुचु', 'खिरिचुभयु', 'खिरिचुयुभ', 'खिरियुभचु', 'खिरियुचुभ', 'खिचुभरियु', 'खिचुभयुरि', 'खिचुरिभयु', 'खिचुरियुभ', 'खिचुयुभरि', 'खिचुयुरिभ', 'खियुभरिचु', 'खियुभचुरि', 'खियुरिभचु', 'खियुरिचुभ', 'खियुचुभरि', 'खियुचुरिभ', 'रिभखिचुयु', 'रिभखियुचु', 'रिभचुखियु', 'रिभचुयुखि', 'रिभयुखिचु', 'रिभयुचुखि', 'रिखिभचुयु', 'रिखिभयुचु', 'रिखिचुभयु', 'रिखिचुयुभ', 'रिखियुभचु', 'रिखियुचुभ', 'रिचुभखियु', 'रिचुभयुखि', 'रिचुखिभयु', 'रिचुखियुभ', 'रिचुयुभखि', 'रिचुयुखिभ', 'रियुभखिचु', 'रियुभचुखि', 'रियुखिभचु', 'रियुखिचुभ', 'रियुचुभखि', 'रियुचुखिभ', 'चुभखिरियु', 'चुभखियुरि', 'चुभरिखियु', 'चुभरियुखि', 'चुभयुखिरि', 'चुभयुरिखि', 'चुखिभरियु', 'चुखिभयुरि', 'चुखिरिभयु', 'चुखिरियुभ', 'चुखियुभरि', 'चुखियुरिभ', 'चुरिभखियु', 'चुरिभयुखि', 'चुरिखिभयु', 'चुरिखियुभ', 'चुरियुभखि', 'चुरियुखिभ', 'चुयुभखिरि', 'चुयुभरिखि', 'चुयुखिभरि', 'चुयुखिरिभ', 'चुयुरिभखि', 'चुयुरिखिभ', 'युभखिरिचु', 'युभखिचुरि', 'युभरिखिचु', 'युभरिचुखि', 'युभचुखिरि', 'युभचुरिखि', 'युखिभरिचु', 'युखिभचुरि', 'युखिरिभचु', 'युखिरिचुभ', 'युखिचुभरि', 'युखिचुरिभ', 'युरिभखिचु', 'युरिभचुखि', 'युरिखिभचु', 'युरिखिचुभ', 'युरिचुभखि', 'युरिचुखिभ', 'युचुभखिरि', 'युचुभरिखि', 'युचुखिभरि', 'युचुखिरिभ', 'युचुरिभखि', 'युचुरिखिभ']
Value of जषबिखुछृ = 7022388
प्रमाणं तृत्तीयेन वर्धयेत् तच्च चतुर्थेनात्म चतुस्त्रिम्शोनेन सविशेष:
The measure is to be increased by its third and this (third) again by its own fourth less the thirty fourth part (of that fourth); this is (the value of) the diagonal of a square (whole side is the measure).
from AncIndMatAst import BA
num=200
sq=BA.squareRoot(num)
print("Square Root By Bodhaayana Approximation Method = ",sq)
Square Root By Bodhaayana Approximation Method = 14.1421356237469
Tyaktvaamtyaat Vishamaat kritim
Dvigunayenmulam same taddhrite
Tyaktvaa labdhakritim tadaadya vishamaat
Labdham dvinighnam nyaset
Panktyaam panktihrite samenyavishamaat
Tyaktvaptavargam phalam
Panktyaam taddvigumam nyasediti muhuh
Pankterdalam syaatpadam
from AncIndMatAst import BM
num=144
sq=BM.squareRoot(num)
print("Square Root By Bhaskara Method = ",sq)
Square Root By Bhaskara Method = 12
Adyam ghanasthanamathaaghane dve
Punastathantyaat ghanto visodhya
Ghanam prithakstham padamasya krityan
Trighnyaa tadaadyam vibhajet phalam tu
Panktyaam nyaset tatkritimantyanighneem
Trighneem tyajet tatprathamaat phalasya
Ghanam tadaadyaat ghanamulamevam
Panktirbhavedevamatah punasca
To Find the cube root of 9261:
1. Start observing the given number from RHS
2. Put dots on the digits appearing at 1st and 4th places starting from RHS, viz., or 1 and 9.
3. Start processing the given number from LHS
4. Remember that the terms of (a + b)^3 = a ^ 3 + 3a ^ 2 * b + 3a * b ^ 2 + b ^ 1 formula will be used in find the cube root
5. Select the leftmost set of digits having the dot and call it XI.
6. X1=9
7. Identity a value of a ^ 3 * (- 8) which is the biggest value that can be subtracted from XI.
8. keep the corresponding value of ^ * a' (=2) in the result location.
9 Subtract that a from X1 and call the resultant value X2.
10. X2 = 9 - 8 = 1
11. Append the next digit of the given number to X2 for continuing the processing Call it as X3.
12. X3 = 12
13. Divide X3 by 3*a ^ 2 (=12)
14. Identify the quotient as "b".
15. b=1
16. Subtract 3 ab from X3 and call the resultant value X4
17. X4 = 12 - 12 = 0
18. Append the next digit of the given number to X4 for continuing the processing Cal it as X5.
19. X5 = 06
20. Subtract 3^ * a^ * b ^ 2 from X5 and call the resultant value X6.
21. X6=06-6-0
22. Append the next digit of the given minber to X6 for continuing the processing. Call it us XT.
23. X7=01
24. Subtract b' from X7 and call the resultant value X8
25. X8=01-1-0
26. Concatenate the values of 'a' and 'b. Call it as ab 27, ab21
28. This value 21 is the cube root of the given number 9261
Result = 21
from AncIndMatAst import BM
num=175616
sq=BM.cubeRoot(num)
print("Cube Root By Bhaskara Method = ",sq)
Cube Root By Bhaskara Method = 56
from AncIndMatAst import Eclipse
date = (2006, 10, 7)
time = (24,12,0)
trueMoon=(321,3,27)
trueRahu=(331,21,11)
Eclipse.LunarEclipse(date,time,trueMoon,trueRahu)
Lunar Eclipse Detail of 07 October 2006
Eclipse Type : Partial
Magnitude of Eclipse : 0.18
Timings of Eclipse :
Beginnig of Eclipse : 23h 35m 23s
Middle of Eclipse : 24h 21m 24s
End of Eclipse : 25h 7m 25s
from AncIndMatAst import Eclipse
date = (2008, 8, 1)
iONMoon=(15,42,0)
trueMoon=(105,33,0)
trueRahu=(294,37,26)
Eclipse.SolarEclipse(date,iONMoon,trueMoon,trueRahu)
Solar Eclipse Detail of 01 August 2008
Eclipse Type : Total
Magnitude of Eclipse : 1.34
Timings of Solar Eclipse :
Beginnig of Eclipse : 13h 31m 13s
Beginnig of Totality : 14h 45m 14s
Middle of Eclipse : 15h 50m 15s
End of Totality : 16h 55m 16s
End of Eclipse : 18h 8m 18s